FairIA

Bibliography

Papers are cited in-line in the slides; full bibliography is below.

generated by bibbase.org
  2018 (1)
Exploring Author Gender in Book Rating and Recommendation. Ekstrand, M. D; Tian, M.; Kazi, M. R I.; Mehrpouyan, H.; and Kluver, D. In 2018. ACM
Exploring Author Gender in Book Rating and Recommendation [link]Paper   doi   link   bibtex  
  undefined (41)
Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse. Hoffmann, A. L. , 22(7): 900–915. .
Where fairness fails: data, algorithms, and the limits of antidiscrimination discourse [link]Paper   doi   link   bibtex   abstract  
Towards a Fair Marketplace: Counterfactual Evaluation of the Trade-off Between Relevance, Fairness & Satisfaction in Recommendation Systems. Mehrotra, R.; McInerney, J.; Bouchard, H.; Lalmas, M.; and Diaz, F. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, of CIKM '18, pages 2243–2251, . ACM event-place: Torino, Italy
Towards a Fair Marketplace: Counterfactual Evaluation of the Trade-off Between Relevance, Fairness & Satisfaction in Recommendation Systems [link]Paper   doi   link   bibtex   abstract  
Algorithmic Bias: From Discrimination Discovery to Fairness-aware Data Mining. Hajian, S.; Bonchi, F.; and Castillo, C. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, of KDD '16, pages 2125–2126, . ACM event-place: San Francisco, California, USA
Algorithmic Bias: From Discrimination Discovery to Fairness-aware Data Mining [link]Paper   doi   link   bibtex   abstract  
Using Image Fairness Representations in Diversity-Based Re-ranking for Recommendations. Karako, C.; and Manggala, P. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, of UMAP '18, pages 23–28, . ACM event-place: Singapore, Singapore
Using Image Fairness Representations in Diversity-Based Re-ranking for Recommendations [link]Paper   doi   link   bibtex   abstract  
Runaway Feedback Loops in Predictive Policing. Ensign, D.; Friedler, S. A.; Neville, S.; Scheidegger, C.; and Venkatasubramanian, S. In Conference on Fairness, Accountability and Transparency, pages 160–171, .
Runaway Feedback Loops in Predictive Policing [link]Paper   link   bibtex   abstract  
Recommendation Independence. Kamishima, T.; Akaho, S.; Asoh, H.; and Sakuma, J. , 81: 187–201. .
Recommendation Independence [link]Paper   link   bibtex   abstract  
Ranking with Fairness Constraints. Celis, L. E.; Straszak, D.; and Vishnoi, N. K. In Chatzigiannakis, I.; Kaklamanis, C.; Marx, D.; and Sannella, D., editor(s), 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107, of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:15, . Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
Ranking with Fairness Constraints [link]Paper   doi   link   bibtex  
Quantifying the Impact of User Attention on Fair Group Representation in Ranked Lists. Sapiezynski, P.; Zeng, W.; E Robertson, R.; Mislove, A.; and Wilson, C. In Companion Proceedings of The 2019 World Wide Web Conference on - WWW '19, pages 553–562, . ACM Press
Quantifying the Impact of User Attention on Fair Group Representation in Ranked Lists [link]Paper   doi   link   bibtex   abstract  
Policy Learning for Fairness in Ranking. Singh, A.; and Joachims, T. . .
Policy Learning for Fairness in Ranking [link]Paper   link   bibtex   abstract  
Personalizing Fairness-aware Re-ranking. Liu, W.; and Burke, R. . .
Personalizing Fairness-aware Re-ranking [link]Paper   link   bibtex   abstract  
Multisided Fairness for Recommendation. Burke, R. .
Multisided Fairness for Recommendation [link]Paper   link   bibtex   abstract  
Model-Based Approaches for Independence-Enhanced Recommendation. Kamishima, T.; Akaho, S.; Asoh, H.; and Sato, I. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 860–867, .
doi   link   bibtex   abstract  
Measuring Fairness in Ranked Outputs. Yang, K.; and Stoyanovich, J. In Proceedings of the 29th International Conference on Scientific and Statistical Database Management, of SSDBM '17, pages 22:1–22:6, . ACM event-place: Chicago, IL, USA
Measuring Fairness in Ranked Outputs [link]Paper   doi   link   bibtex   abstract  
Inherent Trade-Offs in the Fair Determination of Risk Scores. Kleinberg, J.; Mullainathan, S.; and Raghavan, M. In Papadimitriou, C. H., editor(s), 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67, of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–43:23, . Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
Inherent Trade-Offs in the Fair Determination of Risk Scores [link]Paper   doi   link   bibtex  
Information and equity. Lievrouw, L. A.; and Farb, S. E. , 37(1): 499–540. .
Information and equity [link]Paper   doi   link   bibtex  
Investigating User Perception of Gender Bias in Image Search: The Role of Sexism. Otterbacher, J.; Checco, A.; Demartini, G.; and Clough, P. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, of SIGIR '18, pages 933–936, . ACM event-place: Ann Arbor, MI, USA
Investigating User Perception of Gender Bias in Image Search: The Role of Sexism [link]Paper   doi   link   bibtex   abstract  
Gaps in Information Access in Social Networks. Fish, B.; Bashardoust, A.; boyd , d.; Friedler, S. A.; Scheidegger, C.; and Venkatasubramanian, S. In Proceedings of the World Wide Web Conference, pages 480–490, .
Gaps in Information Access in Social Networks [link]Paper   doi   link   bibtex   abstract  
FARE: Diagnostics for Fair Ranking Using Pairwise Error Metrics. Kuhlman, C.; VanValkenburg, M.; and Rundensteiner, E. In The World Wide Web Conference, of WWW '19, pages 2936–2942, . ACM event-place: San Francisco, CA, USA
FARE: Diagnostics for Fair Ranking Using Pairwise Error Metrics [link]Paper   doi   link   bibtex   abstract  
FairSearch: A Tool For Fairness in Ranked Search Results. Zehlike, M.; Sühr, T.; Castillo, C.; and Kitanovski, I. . .
FairSearch: A Tool For Fairness in Ranked Search Results [link]Paper   link   bibtex   abstract  
Fairness-Aware Group Recommendation with Pareto-Efficiency. Xiao, L.; Min, Z.; Yongfeng, Z.; Zhaoquan, G.; Yiqun, L.; and Shaoping, M. In Proceedings of the Eleventh ACM Conference on Recommender Systems, of RecSys '17, pages 107–115, . ACM event-place: Como, Italy
Fairness-Aware Group Recommendation with Pareto-Efficiency [link]Paper   doi   link   bibtex   abstract  
Fairness Without Demographics in Repeated Loss Minimization. Hashimoto, T.; Srivastava, M.; Namkoong, H.; and Liang, P. In International Conference on Machine Learning, pages 1929–1938, .
Fairness Without Demographics in Repeated Loss Minimization [link]Paper   link   bibtex   abstract  
Fairness Through Awareness. Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R. In ITCS '12, pages 214–226, . ACM
Fairness Through Awareness [link]Paper   doi   link   bibtex   abstract  
Fairness of Exposure in Rankings. Singh, A.; and Joachims, T. In KDD '18, pages 2219–2228, . ACM
Fairness of Exposure in Rankings [link]Paper   doi   link   bibtex  
Fairness in Recommendation Ranking through Pairwise Comparisons. Beutel, A.; Chen, J.; Doshi, T.; Qian, H.; Wei, L.; Wu, Y.; Heldt, L.; Zhao, Z.; Hong, L.; Chi, E. H.; and Goodrow, C. . .
Fairness in Recommendation Ranking through Pairwise Comparisons [link]Paper   link   bibtex   abstract  
Fairness and Transparency in Ranking. Castillo, C. , 52(2): 64–71. .
Fairness and Transparency in Ranking [link]Paper   doi   link   bibtex   abstract  
Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Chouldechova, A. , 5(2): 153–163. .
Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments [link]Paper   doi   link   bibtex   abstract  
FA*IR: A Fair Top-k Ranking Algorithm. Zehlike, M.; Bonchi, F.; Castillo, C.; Hajian, S.; Megahed, M.; and Baeza-Yates, R. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, of CIKM '17, pages 1569–1578, . ACM event-place: Singapore, Singapore
FA*IR: A Fair Top-k Ranking Algorithm [link]Paper   doi   link   bibtex   abstract  
Equity of Attention: Amortizing Individual Fairness in Rankings. Biega, A. J; Gummadi, K. P; and Weikum, G. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pages 405–414, . ACM
Equity of Attention: Amortizing Individual Fairness in Rankings [link]Paper   doi   link   bibtex  
Does mitigating ML\textquotesingle s impact disparity require treatment disparity?. Lipton, Z.; McAuley, J.; and Chouldechova, A. In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., editor(s), Advances in Neural Information Processing Systems 31, pages 8125–8135. Curran Associates, Inc., .
Does mitigating ML\textquotesingle s impact disparity require treatment disparity? [pdf]Paper   link   bibtex  
Disparate Interactions: An Algorithm-in-the-Loop Analysis of Fairness in Risk Assessments. Green, B.; and Chen, Y. In Proceedings of the Conference on Fairness, Accountability, and Transparency - FAT* '19, pages 90–99, . ACM Press
Disparate Interactions: An Algorithm-in-the-Loop Analysis of Fairness in Risk Assessments [link]Paper   doi   link   bibtex   abstract  
Designing Fair Ranking Schemes. Asudeh, A.; Jagadish, H. V.; Stoyanovich, J.; and Das, G. . .
Designing Fair Ranking Schemes [link]Paper   link   bibtex   abstract  
Decision making with limited feedback: Error bounds for predictive policing and recidivism prediction. Ensign, D.; Frielder, S. A; Neville, S.; Scheidegger, C.; and Venkatasubramanian, S. ,9. .
link   bibtex   abstract  
Debiasing Desire: Addressing Bias and Discrimination on Intimate Platforms. Hutson, J.; Taft, J.; Barocas, S.; and Levy, K. , 2: 18. .
Debiasing Desire: Addressing Bias and Discrimination on Intimate Platforms [link]Paper   doi   link   bibtex   abstract  
Certifying and Removing Disparate Impact. Feldman, M.; Friedler, S. A; Moeller, J.; Scheidegger, C.; and Venkatasubramanian, S. In pages 259–268, . ACM
Certifying and Removing Disparate Impact [link]Paper   doi   link   bibtex  
Calibrated recommendations. Steck, H. In pages 154–162, . ACM
Calibrated recommendations [link]Paper   doi   link   bibtex  
Beyond Parity: Fairness Objectives for Collaborative Filtering. Yao, S.; and Huang, B. In Guyon, I; Luxburg, U V; Bengio, S; Wallach, H; Fergus, R; Vishwanathan, S; and Garnett, R, editor(s), Advances in Neural Information Processing Systems 30, pages 2925–2934. Curran Associates, Inc., .
Beyond Parity: Fairness Objectives for Collaborative Filtering [pdf]Paper   link   bibtex  
Balanced Neighborhoods for Multi-sided Fairness in Recommendation. Burke, R.; Sonboli, N.; and Ordonez-Gauger, A. , 81: 202–214. .
Balanced Neighborhoods for Multi-sided Fairness in Recommendation [link]Paper   link   bibtex   abstract  
Assessing and Addressing Algorithmic Bias - But Before We Get There... Springer, A.; Garcia-Gathright, J.; and Cramer, H. In AAAA Spring Symposium Series, .
Assessing and Addressing Algorithmic Bias - But Before We Get There... [link]Paper   link   bibtex  
Assessing and Addressing Algorithmic Bias - But Before We Get There. Garcia-Gathright, J.; Springer, A.; and Cramer, H. . .
Assessing and Addressing Algorithmic Bias - But Before We Get There [link]Paper   link   bibtex   abstract  
All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. Ekstrand, M. D; Tian, M.; Azpiazu, I. M.; Ekstrand, J. D; Anuyah, O.; McNeill, D.; and Pera, \. M. S. In PMLR, volume 81, pages 172–186, .
All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness [link]Paper   link   bibtex  
A Nutritional Label for Rankings. Yang, K.; Stoyanovich, J.; Asudeh, A.; Howe, B.; Jagadish, H.; and Miklau, G. In Proceedings of the 2018 International Conference on Management of Data, of SIGMOD '18, pages 1773–1776, . ACM event-place: Houston, TX, USA
A Nutritional Label for Rankings [link]Paper   doi   link   bibtex   abstract