# Fairness & Discrimination in Recommendation & Retrieval

## Objectives

- Understand key concepts of algorithmic fairness
- Identify stakeholders with fairness concerns in an information access system
- Identify possible sources of unfairness in an information access system
- Assess the applicability of existing metrics and experimental protocols for assessing fairness concerns in a particular system

## About Us

**Michael Ekstrand -** Assistant Professor, People and Information Research Team — Boise State University

**Fernando Diaz** - Principal Research Manager, Fairness, Accountability, Transparency, and Ethics — Microsoft Research Montreal

**Robin Burke** - Professor, That Recommender Systems Lab — University of Colorado, Boulder







## Motivating Examples

## Embedding Bias and Review Analysis [Speer 2017]

Restaurant reviewing is a common activity

Mine reviews to recommend!

Sentiment analysis?

With word embeddings?

Why isn't the recommender giving me any Mexican recommendations?



## Result Character [Noble 2018]

Comedians Jeremiah Watkins and Paul Elia have the opportunity to make out with a black woman "for the first time" with comedians Cherelle Patrice and Precious Hall.

| Star X   <b>Q</b> dvc/dvc X   <b>Q</b> Issu                                                                                | ies 🛛 🗙 🛛 🚍 Purchas 🗙 🛛 🚱 FA                                                                                                                                            | CTS-I 🗙 📄 Rolling i 🗙 🚺 black gi                                                                                                            | X 🚺 white g X   + 🚽 🗇               | D <sub>4</sub> C Get Star       | X O dvc/dvc X O Issues X E Purchas X S FACTS-I X E Rolling X O black                                                                                                                                                                                                                                             | i gi 🗙 🚺 white gi 🗙 🕂 👘 🗇                           |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| C https://duckduckgo.c                                                                                                     | om/?q=black+girls&t=h_&ia=vid                                                                                                                                           | eos                                                                                                                                         | 🖈 🔨 🦷 🦉 📕 🕼 🏟                       | $\leftrightarrow \rightarrow c$ | https://duckduckgo.com/?q=white+girls&t=h_&ia=web                                                                                                                                                                                                                                                                | 🛧 🖈 📬 🖉 🔳 🗋 🚱                                       |
| 📀 Save to Pinboard 📀 Altmetric it! 🝐 GDrive Action Items                                                                   |                                                                                                                                                                         |                                                                                                                                             |                                     |                                 | 🖻 Save to Pinboard 🔇 Altmetric it! 💧 GDrive Action Items                                                                                                                                                                                                                                                         | Other bookman                                       |
| black girls                                                                                                                |                                                                                                                                                                         | 0                                                                                                                                           | Diana indiana ya 🖌 🖛                |                                 | white girls Q                                                                                                                                                                                                                                                                                                    | Privacy, simplified. 👻 🍠 👻 🗮                        |
| Didck girls                                                                                                                |                                                                                                                                                                         | 4                                                                                                                                           | Privacy, simplified. * <b>y</b> * = |                                 | Web Images Videos News Settings *                                                                                                                                                                                                                                                                                |                                                     |
| Web Images Videos                                                                                                          | News Meanings                                                                                                                                                           | Settings 🔹                                                                                                                                  |                                     |                                 | All Regions 🔻 Safe Search: Moderate 👻 Any Time 💌                                                                                                                                                                                                                                                                 |                                                     |
| All Regions   Safe Se Videos                                                                                               | arch: Moderate 🔹 Any Time                                                                                                                                               | •                                                                                                                                           |                                     |                                 | White Girl (2016 film) - Wikipedia<br>W https://en.wikipedia.org/wiki/White_Girl (2016_film)<br>White Girl is a 2016 American film written and directed by Elizabeth Wood in her                                                                                                                                 | White Girls<br>White Girls is a 2013 book by Hilton |
|                                                                                                                            |                                                                                                                                                                         |                                                                                                                                             |                                     |                                 | directorial debut. It stars Morgan Saylor, Brian Marc, India Menuez, Adrian Martinez,<br>Anthony Ramos, Ralph Rodriguez, Annabelle Dexter-Jones, Chris Noth and Justin Bartha.                                                                                                                                   | Als. Wikipedia<br>Author: Hilton Als                |
| Del Girls in Bilano                                                                                                        | 6:41                                                                                                                                                                    | WYD 5:03                                                                                                                                    |                                     |                                 | The 50 Hottest White Girls With Ass   Complex Characteristic Complex.com/pop-culture/the-50-hottest-white-girls-with-ass/                                                                                                                                                                                        | Published: 2013<br>Publisher: McSweeney's           |
| Black girls in bikinis ep 8                                                                                                | B MEXICAN PICKING UP<br>BLACK GIRLS IN DA<br>HOOD!                                                                                                                      | White guys hitting on black girls                                                                                                           |                                     |                                 | Used to be <b>white girls</b> were afraid to have big butts. Fortunately, those days are over. We<br>picked the 50 best examples of the booty-full <b>white girl</b> .                                                                                                                                           | Feedback                                            |
| 2K views                                                                                                                   | 5.8K views                                                                                                                                                              | ▶ 58K views                                                                                                                                 |                                     |                                 | Urban Dictionary: White Girl                                                                                                                                                                                                                                                                                     |                                                     |
| ightarrow More Videos                                                                                                      |                                                                                                                                                                         | Are these links helpful? Yes No                                                                                                             |                                     |                                 | A creature who often posts pictures of Starbucks on Instagram, Tumbir, or Facebook.<br>Often wears leggings and Ugg Boots and posts about how Nutella is very good when<br>everybody knows it is.                                                                                                                |                                                     |
| Hot Black Girls (45 pics) - AcidCow.com                                                                                    |                                                                                                                                                                         |                                                                                                                                             |                                     |                                 | White Girls: Hilton Als: 9781940450254: Amazon.com: Books<br>a. https://www.amazon.com/White-Girls-Hilton-Als/dp/194045025X                                                                                                                                                                                      |                                                     |
| l am a white guy and I low<br>3,4,5,18,29,35 and 36:) :03<br>except the woman third fr<br><b>black girls</b> do because ma | e the hot <b>Black Girls</b> ! As a white g<br>8: As for # 45 I want to sleep with<br>om the left, sorry but not all <b>black</b><br>aking love with them is like being | guy, my special picks are<br>all the <b>girls</b> in the picture<br><b>c girls</b> get my vote, but most all<br>in Sweet Heaven for a white |                                     |                                 | "The read of the year," —Junot Diaz <b>White Girls</b> , Hilton Als's first book since The Women 16<br>years ago, finds one of The New Yorker's boldest cultural critics defity weaving together<br>his brilliant analyses of literature, art, and music with fearless insights on race, gender, and<br>history. |                                                     |
| guy :14: !                                                                                                                 |                                                                                                                                                                         |                                                                                                                                             |                                     |                                 | White Girls' Dresses - Macy's                                                                                                                                                                                                                                                                                    |                                                     |
| Black Girls Kiss White Guys 'For the First Time' - YouTube Thtps://www.youtube.com/watch?v=InRu9Kmz6R8                     |                                                                                                                                                                         |                                                                                                                                             |                                     |                                 | ★ https://www.macys.com/shop/kids-clothes/girls-dresses/Color_normal/White?id=31460<br>White Girls <sup>1</sup> Dresses at Macy's come in a variety of styles and sizes. Shop White Girls <sup>1</sup><br>Dresses at Macy's and find the latest styles for your little one today.                                |                                                     |

## Dating Recommendations [Hutson et al. 2018]

If my dating profile says "no racial preference", who should I be recommended?

## We quickly see that technical solutions and expertise are insufficient.

Get comfortable with being uncomfortable.

## **Scholarly Search**

#### Do major research groups dominate search results?

## Are smaller universities or labs disadvantaged in research discoverability?

## **Economic Opportunity**

If microloans in southeast Asia are funded more quickly than in sub-saharan Africa, should the system promote loans in Sierra Leone?

- What projects are "worthy"?
- What if the user has only ever lent to women in Vietnam?
- What is your organizational mission and can you be sure your users share it?



Dung Vietnam

A loan of \$1,300 helps to buy more baby chickens to raise and sell.



Pa Alie Sierra Leone A loan of \$800 helps to buy more goods to increase his business.

## Who Gets Good Results?



web search performance can be biased across different demographic groups

Mehrotra, Sharma, Anderson, Diaz, Wallach, Yilmaz. Auditing search engines for differential satisfaction across demographics, 2017.



## Overview

## Information Access Systems

an information access system mediates an information consumer's interaction with a large corpus of information items.

- generalizes information retrieval and recommendation systems.
  - share interfaces
  - share fairness problems

## **One View: Unified Scoring**

s(i|u,h,x) O(l|u,h,x)

- i: item
- u: user (and their historical profile / latent vectors)
- h: explicit task description (e.g. query)
- x: context

## **Information Access Systems**



consumers

corpus

producers

## What is the problem?

- unconstrained, information access systems can reflect the bias inherent in data (e.g. consumer behavior, producer content).
  - biased demographics in user population
  - biased topical distribution in corpus
  - biased language in documents
  - biased opportunity to contribute documents
- algorithms often amplify small preferences and differences

## Why is it important?

**legal**: information access—especially in settings like employment, housing, and public accommodation— potentially is or will be covered by anti-discrimination law.

**publicity**: disclosure of systematic bias in system performance can undermine trust in information access.

**financial**: underperformance for large segments of users leads to abandonment.

moral: professional responsibility to provide equal information access.

"The use of information and technology may cause new, or enhance existing, inequities. Technologies and practices should be as inclusive and accessible as possible and computing professionals should take action to avoid creating systems or technologies that disenfranchise or oppress people. Failure to design for inclusiveness and accessibility may constitute unfair discrimination."

"In order to promote inclusion and eradicate discrimination, librarians and other information workers ensure that the right of accessing information is not denied and that equitable services are provided for everyone whatever their age, citizenship, political belief, physical or mental ability, gender identity, heritage, education, income, immigration and asylum-seeking status, marital status, origin, race, religion or sexual orientation."

## Why is current practice insufficient?

no way to evaluate: unclear what we mean by fairness or how to measure.

no way to optimize: unclear how to optimize while respecting fairness.

## Where do we look for answers?

Fairness is a *social* concept and inherently *normative* 

Selbst et al.: fairness "can be procedural, contextual, and contestable, and cannot be resolved through mathematical formalisms"

Engaging with these problems requires engaging with many disciplines:

- Law
- Ethics / philosophy
- Sociology
- Political science
- Many, many more

## Many questions

You will probably leave today with more questions than answers.

That's normal and expected.

Our goal:

- Better questions
- Pointers into the literature to start looking for answers



## Agenda

#### Part 1: Setting the Stage

- Motivating Examples
- Algorithmic Fairness
  - Problems and Concepts
  - Constructs, Metrics, and Results
  - Ensuring Fairness
- What's Different about RecSys?

#### Part 2: It Gets Harder

- Fair for Who? (Multisided)
- Fair How?
- Problem Space Taxonomy
- FairRec/IR/Rank Constructs
- Feedback Loops
- Fairness in Production
- Open Problems

## Problems and Concepts

## Organizing the Space

- Who is experiencing (un)fairness?
- How does that (un)fairness manifest?
- How is that (un)fairness determined?

## **Common Examples**

**Finance** - system computes credit score/risk, decide to offer loan Prediction goal: probability of default

**Detention** (either pretrial or post-conviction) - system computes risk score Prediction goal: probability of failure-to-appear and/or new crime

#### **College admissions**

Prediction goal: likelihood to succeed? (less consistent)

## Harm

**Distributional harms** arise when someone is denied a resource or benefit.

- Prison time
- Job opportunities
- Loans
- Search position
- Quality information

## Harm

**Representational harms** arise when someone is *represented incorrectly* in the system or to its users.

- Misgendering
- Racial miscategorization
- Stereotyping (esp. reinforcing negative stereotypes)
- 'Inverse' representational harms: who shows up when searching for 'ceo'?

Can happen to **content creators** or to **users**.

## **Representation Biases**

programmer

homemaker



## Learning Representational Harms

Representation learning - let's embed {words, products, people} into vector spaces

What are you associated with in the vector space?

- Sentiment analysis do genders or ethnicities have a sentiment?
- Association are things like job descriptions embedded in ways that replicate sexism or racism?
  - Occupations project onto a gender axis
  - Goal might be orthogonality

#### Fair representation learning seeks to mitigate T Bolukbasi, K-W Chang, J Zou, V Saligrama, A Ralai. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. 2016

## From Representation to Distribution

- Mine restaurant reviews for recommendation
- Sentiment analysis to interpret reviews (item understanding)
- The embedding learned a negative sentiment for 'mexican'



## **Direct and Indirect**

#### **Direct discrimination**

- Use protected class in decision-making
- Often illegal

Corresponds to *taste-based* in economics

#### Indirect discrimination

 Protected class affects results through correlates in other variables

Corresponds to *statistical* in economics

Example:

- Increasing insurance premium because you are Black -> direct
- Increasing insurance premium because of your neighborhood, and it is predominantly Black -> indirect

## **Basis of Fairness**

Individual fairness says similar individuals should be treated similarly

• Two applicants with the same ability to repay a loan should receive the same decision

**Group fairness** says each salient group of people should be treated comparably.

- Black loan applicants should not be denied more often than white
- Often concerned with a protected class or sensitive characteristic
   In U.S. context, anti-discrimination law provides this

## Why is Individual Fairness Insufficient?

Fundamental reason: historical discrimination + measurement impossible

- Measures of individual merit are skewed
- Prospective outcomes may vary for social reasons

Example: SAT scores predict socioeconomic status.

Scores conflate aptitude and preparation

## Why is Individual Fairness Insufficient?

Fundamental reason: historical discrimination + measurement impossible

- Measures of individual merit are skewed
- Prospective outcomes may vary for social reasons

Example: SAT scores predict socioeconomic status.

Scores conflate aptitude and preparation

Why should we assume a difference in score is a problem with the people and not the test?

## **Group Non-Fairness Constructs**

**Disparate treatment:** members of different groups are *treated* differently

Applying different standards to people of different ethnicities

**Disparate impact:** different groups obtain different *outcomes* 

Men pass the employment test at a higher rate than other genders Foundation of much U.S. anti-discrimination law

**Disparate mistreatment:** different groups have different *error rates* 

A risk assessment tool is more likely to misclassify a black defendant as high-risk
# questions?

#### Where does Unfairness Come From?



#### Unfairness in the world

- Different group sizes
  - Naive modeling learns more accurate predictions for majority group
- Historical and ongoing discrimination
  - Produces 'unnatural' distributions, e.g. redlining in the U.S. skews location, housing
  - Oppression skews social position, socioeconomic status, education, etc.
  - Arises from policy, practice, or both
  - Effects propagate after official practice ends

#### Unfairness in data

- Sampling strategy who is included in the data?
- Response bias who responds / submits data points?
- Proxy selection valid and unbiased for variable of interest?
- Measurement (in)variance is instrument consistent across subpopulations?
- Definitions of metrics what standards or perspectives are reflected?
- Codebook how is data recorded?
  - Especially important for sensitive variables such as gender, race, and ethnicity
- Cultural understanding do we understand what the data mean in context?

#### Unfairness in models

- Using sensitive information (e.g. race) directly + adversely
- Algorithm optimization eliminates "noise", which might constitute the signal for some groups of users

Unfairness is *usually* an emergent property of data + model.

#### Unfairness in evaluations

- Definition of Success who is it good for, and how is that measured?
  - Who decided this? To whom are they accountable?
- How are relevant subgroups measured and aggregated in evaluation?
- All the data issues apply

#### Unfairness in response

- Humans + computers do not compose
  - Does model output skew human response differently?
- Social factors can skew response
  - Community support for loan repayment, making court dates
- Response feeds into next round's training
  - Affects subsequent data collection too!
- Response affects the world (e.g. incarceration rates & distribution, finance access and its effects)

# questions?

#### Constructs, Metrics, Results

#### Spaces, Skews, & Discrimination



- Subjects have 'true' properties in **construct space** (ability to pay, relevance)
- System has access to observation space
- Computes results into **decision space**

Unfairness arises through **distortions** between spaces

- Random distortion fine and recoverable
- Structural bias (e.g. systemic racism) manifests as systemic distortion
  - The *observation process* is skewed (violation of measurement invariance)

S Friedler, C Scheidegger, S Venkatasubramanian. On the (im)possibility of fairness. 2016. Notation from S. Mitchell, E. Potash, S. Barocas. Prediction-Based Decisions and Fairness: A Catalog of Choices, Assumptions, and Definitions. 2018.

#### Spaces, Skews, & Discrimination



Key results:

- Individual and group fairness operate with incompatible axioms
  - Individual fairness requires 'what you see is what you get'
  - Group fairness seeks to correct systemic discrimination
- Discrete decision spaces (common!) preclude (individual) fairness

Unclear when ranking or in repeated probabilistic decision processes



Outcome y

Decision d(v), often based on score s(v)

Goal: d(v) = y (e.g. d(v) = 1 to offer a loan, and y = 1 if it is repaid)

S. Mitchell, E. Potash, S. Barocas. Prediction-Based Decisions and Fairness: A Catalog of Choices, Assumptions, and Definitions. 2018.

#### **Discrimination Types**

**Direct** discrimination - use the sensitive attribute

**Indirect** discrimination - arises from redundancies between sensitive & insensitive attribute

#### **Individual Fairness**







**Prerequisite:** task-specific distance metric  $m(v_1, v_2)$ decision distribution metric  $m'(d(v_1), d(v_2)))$ 

**Definition of Fair:**  $\forall v_1, v_2.m'(d(v_1), d(v_2)) \leq m(v_1, v_2)$ 

If two individuals are similar, they receive similar outcomes

Says nothing about dissimilar individuals

#### Similarity and Recommendation

People with the same financial situation should receive the same loan decision.

Should similar documents both be recommended?

- Single ranking diversity says no!
- Multiple rankings maybe they get the same chance, but don't appear together?

#### More on this later.



Prerequisite: sensitive attribute or group membership (e.g. race)

**Definition of Fair:** E[d(v)|a] = E[d(v)]

**Disparate Impact Standard (U.S. law):** 

$$\Pr[d(v) = 1 | a = 0] \ge 0.8 \cdot \Pr[d(v) = 1 | a = 1]$$

Key insight [Dwork]: group-blindness does not ensure equitable group outcomes

C Dwork, M Hardt, T Pitassi, O Reingold, R Zemel. Fairness through awareness. 2012 M. Feldman, S. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian. Certifying and removing disparate impact. 2015

#### Why Statistical Parity?

It's unconditioned on outcome or predictive variables - why is this ok?

- Predictive variables correlate should we have a strong prior correlated components being irrelevant?
- Non-sensitive covariates are an opportunity to hide or launder bias

Partially inherited from U.S. law

One framing: statistical parity reflects a **strong prior** that advantaged and disadvantaged people are **fundamentally the same** in their relevant characteristics.

#### **Error Parity**

Goal:

different groups experience different misclassification rates

#### Example: recidivism prediction

- Defendant info  $\Rightarrow$  risk classification ('high risk')
- FPR: classified as high-risk when would not recidivate
- FNR: low-risk when would recidivate

If FPR\_black > FPR\_white, then the system is more likely to **falsely accuse** a black defendant than a white defendant

FNR\_white > FNR\_black: system more likely to let white defendant **off the hook** 



**Prerequisites:** protected class / attributes

Definition of Fair (FPR):  $\Pr[d(v) = 1 | y = 0, a] = \Pr[d(v) = 1 | y = 0]$ 

Violations are **disparate mistreatment**.

M B Zafar, I Valera, M Gomez Rodriguez, K Gummadi. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. 2017



outcome ("equal opportunity" for creditworthy people to get loans)

Prerequisites: protected class / attributes

**Definition of Fair:** Pr[d(v) = 1 | y = 1, a] = Pr[d(v) = 1 | y = 1]

In practice - requires time travel.

Suitable for supervised learning (but needs constant review)

#### Calibration and Predictive Value Parity

#### Goal:

Judgments are equally predictive across groups Scores are equally predictive across groups

#### **Definition of Fair:**

equal PPV:  $\Pr[y|d(v), a] = \Pr[y|d(v)]$ calibration:  $\Pr[y|s(v), a] = \Pr[y|s(v)]$ 

> A Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. 2017 J Kleinberg, S Mullainathan, M Raghavan. Inherent Trade-offs in the Fair Determination of Risk Scores. 2017

#### Expanding the Concept Space

Any marginal of the confusion matrix can be used to define a fairness metric:

- Equal accuracy
- Equality of any error metric

We can also look at scores within any category:

 Balance for positive class - scores for positive cases should be equivalent between groups E[s(v)|y = 1, a] = E[s(v)|y = 1]

S Mitchell, E Potash, S Barocas. Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions. 2018

# questions?

#### Tradeoffs

If *base rates* are different, you cannot simultaneously equalize:

- False positive rate
- False negative rate
- Positive predictive value

System will be unfair, by some definition.

A Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. 2017 J Kleinberg, S Mullainathan, M Raghavan. Inherent Trade-offs in the Fair Determination of Risk Scores. 2017

#### Tradeoffs (continued)

If base rates are the same, parity can still be violated.

Model: subject has criminality score *p*; recidivates with probability *p*.

- Same mean probability (0.2)
- Perfectly calibrated
- Threshold: detain 30% (no disparate treatment)
- Unequal detention rates (disparate impact)
- Unequal FPR (disparate mistreatment)



S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, A. Huq. Algorithmic Decision Making and the Cost of Fairness. 2017. Figures from our replicated simulation.

#### What Does This Mean?

Different concepts of (in)justice map to different metrics

**Disparate treatment** — people should be treated the same regardless of group Use the same model and thresholds

**Disparate impact** – groups should experience equal outcome likelihood Statistical parity metrics

**Disparate mistreatment** – groups should experience equal unjustified adversity Error parity metrics

You cannot have it all. Applications will differ in what is most important.

Z Lipton, J McAuley, A Chouldechova. Does mitigating ML's impact disparity require treatment disparity? 2018

#### What About The People?

Scores are rarely the end of the line!



#### What About The People?

Scores are rarely the end of the line!

*Response* is biased

- Skews in-practice outcomes
- Biases subsequent model retraining
  - Ex: Impossible to learn that a rejected option would have been good after all
- Presence of risk scores can **increase** decision disparity

#### **Pitfalls of Fairness**

Selbst et al. identify 5 *abstraction traps*:

- Framing isolating technical components from their surrounding sociotechnical contexts and human response
- Portability assuming equivalence between social contexts
- Formalism assuming operationalizations can fully capture social concepts
- Ripple Effect overlooking changes to the social system that arise from introducing or modifying technology
- Solutionism assuming technology is the best (or even a good) solution

#### Pitfalls 2

- Asymmetric feedback (we don't learn from denied loans)
  - D Ensign, S Friedler, S Neville, C Scheidegger, S
     Venkatasubramanian. Decision making with limited feedback: Error bounds for predictive policing and recidivism prediction. 2018.
- Secondary effects of decision processes
  - What effect does incarceration have on crime?
  - What effect does representation in book authorship have on future production?



### While our systems are running, lives are materially impacted.

Or lost.

#### More Reading

- 21 Definitions of Fairness and Their Politics [Narayanan 2018]
- Mirror Mirror [Mitchell]
- Prediction-Based Decisions and Fairness [Mitchell et al. 2018]
- 50 Years of Test (Un)fairness [Hutchinson and Mitchell 2019]
- Fairness and Abstraction in Sociotechnical Systems [Selbst et al. 2019]
- Where Fairness Fails [Hoffman 2019]

All in the bibliography.

# questions?

#### Fairness Methods

### Pre-processing Data Algorithm / Model Recommendations

If bias is present in the data, we can de-bias before building a model

Data relabeling/repair to remove disparate impact [Feldman, et al. 2015, Kamiran et al. 2012, Salimi et al. 2019]

Can go as far as to obscure data within variables!

#### Data sampling [Hajian & Domingo-Ferrer 2013]

D Ensign, S Friedler, S Neville, C Scheidegger, S Venkatasubramanian. Runaway Feedback Loops in Predictive Policing. 2018 M. Feldman, S. Friedler, J. Moeller, C. Scheidegger, S. Venkatasubramanian. Certifying and removing disparate impact. 2015 F Kamiran, T Calders. Data preprocessing techniques for classification without discrimination. 2012 S Hajian, J Domingo-Ferrer. A Methodology for Direct and Indirect Discrimination Prevention in Data Mining. 2013
#### Modifying the Algorithm



#### Alter the objective of the algorithm to emphasize fairness

#### Typically by adding regularization

T Kamishima, S Akaho, H Asoh, J Sakuma. Considerations on Fairness-Aware Data Mining. 2012 T Kamishima, S Akaho, H Asoh, I Sato. Model-Based Approaches for Independence-Enhanced Recommendation. 2016 R Burke, N Sonboli, A Ordonez-Gauger. Balanced Neighborhoods for Multi-sided Fairness in Recommendation. 2018 Post-processing Algorithm Scores

Example: risk prediction

**Problem:** same threshold results in disparate impact

**Solution:** use per-group thresholds

**Solution:** re-engineer test / features (but see tradeoffs above!)

Post-processing Algorithm Outputs

**Example:** word embeddings

**Problem:** word embeddings encode sexist & racist skews

**Demonstration:** project 'neutral' words onto a gender axis

**Solution:** learn a transformation to re-embed words, preserving inner products subject to orthogonality constraints on target words

T Bolukbasi, KW Chang, J Zou, V Saligrama, A Kalai. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. 2016

#### **Post-processing Recommendations**



Re-ranking recommendation results for enhanced fairness

Greedy methods [Zehlike et al. 2017, Liu et al. 2019]

Constraint-satisfaction methods [Singh & Joachims, 2018]

**Post-processing Decision Feedback** 

**Example:** predictive policing

**Problem:** bandit setting amplifies small differences into large ones (allocate all police to an area with 5% more crime)

**Solution:** sample feedback with inverse probability scoring

**Solution:** reevaluate structure of policing system

# questions?

### RecSys: What's Different

#### **Information Access Pipeline**



#### "Classical" fairness setting

Mitchell et al:

- Classification: high/low risk of [crime, default, job failure]
- Decisions and consequences are individual and independent
- One-shot process

Also:

• Process independent of "user"/decision-maker (e.g. loan officers are interchangable)

Exceptions to many of the above... (e.g. selective college admissions, reinforcement learning)

S Mitchell, E Potash, S Barocas. Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions. 2018

#### Retrieving and recommending

- Evaluating ranked lists involves a user model
  - Ranking, not classification violates independence
  - Classification views have small, fixed number of positive decisions (e.g. P@k)
- Queries are repeated more than one opportunity for decisions
  - Opportunity to address first point
- Outcome (relevance / utility) is subjective and personalized
  - Different users have different knowledge, styles, informational preferences
  - Components of relevance are pure personal preference, esp. in recommendation
- Multiple sets of stakeholders with fairness concerns

#### SOME ETHICAL AND POLITICAL IMPLICATIONS OF THEORETICAL RESEARCH IN INFORMATION SCIENCE

and

Nicholas J. Belkin The City University London, England Stephen E. Robertson University College London, England

We have suggested both reasons and means for limiting theoretical investigations in information science. Much of this paper has been based on our own social ideology, which, although we think it correct for the situation, we must admit is arguable. We argue here for the necessity of making explicit a social ideology, such as ours, and acting upon it. By such action, we mean, for instance, attempting to develop a science which cannot be used for malign purposes. We would like to finish by emphasizing two points: we must perform such selfconscious examination and limitation in order to keep our theoretical activities related to their social context; and, we must do this before our developing theories reach a point where they might be misapplied - for by then it will be too late to prevent their being misapplied.

# coffee

#### Agenda

#### Part 1: Setting the Stage

- Motivating Examples
- Algorithmic Fairness
  - Problems and Concepts
  - Constructs, Metrics, and Results
  - Ensuring Fairness
- What's Different about RecSys?

#### Part 2: It Gets Harder

- Fair for Who? (Multisided)
- Fair How?
- Problem Space Taxonomy
- Fair IR/Rec/Rank Constructs
- Feedback Loops
- Fairness in Production
- Open Problems

### Fair for Who?

#### **Multisided Fairness**

#### Different stakeholders have different concerns

- **Consumers** want quality of service, access to information
- **Producers** want opportunity

How are these fairly allocated?

Different applications give rise to different tradeoffs.

#### Who does Information Access Affect?



Users



Authors



Vendors



Publishers



Stockholders



Society

#### **Consumer Fairness**

Consumer fairness is violated if user experience differs in an unfair way

- Quality of service (result relevance, user satisfaction)
- Resulting information (different, lower-paying job listings)
- Costs of participation (differential privacy risks)

*Group recommendation* has long been concerned with fairness across group members

#### **Provider Fairness**

Provider fairness is violated if content creators are treated unfairly

- Different opportunity to be read/purchased/cited
- Different visibility
- Different costs of participation

Publishers and authors are both providers, with different concerns.

#### **Diversity and Subject Fairness**

Subject fairness is violated if information subjects are not fairly represented or not fairly treated

- News results omitting rural issues
- Medical results not representative of population
  - Scholarly papers skewed towards particular populations
  - Diseases disproportionately affecting certain populations underrepresented
- Image search results not representative of population

Closely related to diversity, but stems from **different normative concerns** 



#### **Individual Fairness**

- Each user gets comparable quality of service
  - Already standard practice
- Each provider gets comparable opportunity for user engagement
  - Conditioned on relevance
  - Different attention/relevance curves induce disparities

#### **Group Fairness**

- System does not systematically underserve groups of users
- System does not disadvantage groups of providers
- System does not disadvantage groups of subjects

# questions?

### **Consumer Fairness**

#### **Consumer Fairness**

Consumer fairness is violated if user experience differs in an unfair way

- Quality of service (result relevance, user satisfaction)
- Resulting information (different, lower-paying job listings)
- Costs of participation (differential privacy risks)

Not the most widely-studied

**Quality of Service: Fundamental Cause** 

## Aggregate quality/accuracy/response emphasizes majority populations.

#### User have different...

- ... reading fluency
- ... background knowledge
- ... tastes and preferences
- ... contexts of use

#### Warm-up: Fairness in Group Recommendations

- Recommending for a group of people
- How do you elicit preferences?
- How do you balance group member utilities?

Long-studied in group recommender systems.

Oral history: giving vetos leads to least-offensive

A Delcic, J Neidhardt, T T Nguyen, F Ricci, L Rook, H Werthner, M Zanker. Observing Group Decision Making Processes. 2016 D Serbos, S Qi, N Mamoulis, E Pitoura, P Tsaparas. Fairness in Package-to-Group Recommendations. 2017 L Xiao, Z Min, Z Yongfeng, G Zhaoquan, L Yiqun, M Shaoping. Fairness-aware Group Recommendation with Pareto-Efficiency. 2017

#### **Differential Satisfaction**

## User satisfaction should be independent of protected attribute.

GU PCC PCC GU 1.00 1.00 0.75 0.75 Normalized metric value 0.00 occordination 0 0.50 0.25 0.00 Reform SCC Reform SCC 1.00 0.75 0.50 0.25 0.25 0.00 0.00 female male female male 2 3 4 2 3 4 (a) age (b) gender

R Mehrotra, A Anderson, F Diaz, A Sharma, H Wallach, E Yilmaz. Auditing search engines for differential satisfaction across demographics. 2017

#### DS Analysis: Context Matching

Causal inference technique simulating a matched pairs experiment

- For each data point in one group, find match in another
- Isolates effect of group membership

Matched intent w/ final success result (navigational only)

- Controls for query + intent
- Limits data + generalizability



Figure 3: Context-matched normalized query-averaged values for each metric by age groups (a) and genders (b). "GU" denotes graded utility; "PCC" denotes page click count; "Reform" denotes reformulation rate; "SCC" denotes successful click count. Error bars (one standard error) are present in all plots, but are mostly so small that they cannot be seen.

#### **DS Analysis: Linear Modeling**

Dependent variable: metric or pairwise satisfaction ordering (Si > Sj)

Independent variables: age, gender, query difficulty (for metric model)



R Mehrotra, A Anderson, F Diaz, A Sharma, H Wallach, E Yilmaz. Auditing search engines for differential satisfaction across demographics. 2017

#### **Recommendation Accuracy**



#### Stratify offline recommender evaluation by demographic



#### **Recommendation Data**



#### Significant Differences

Some groups have better performance

- Men in MovieLens, women in Last.FM 1K
- Young & old in Last.FM 360K

Not simple 'biggest group  $\Rightarrow$  most benefit' story

- MovieLens differences correlate with # of users
- Last.FM differences anti-correlate

#### Controls

What drives this?

- Profile size? Controlled with linear model
  - Differences persist
- Number of users? Resampled data set
  - Differences drop below significance



#### **Confounds and Limitations**

Popularity bias - U1R correction (Bellogin) scrambles age differences

Profile size - negative correlation with accuracy

• Suspect larger profiles had already rated more 'easy' recs

#### No examination of **result character**
# **Collaborative Filtering Parity**

Goal: equal predictive accuracy

Metric: difference in rating prediction error between advantaged & disadvantaged group; four types:

- Signed value
- Absolute value
- Underestimation
- Overestimation

Each admits a regularizer

Insight: allow different results with comparable quality.

S Yao, B Huang. Beyond Parity: Fairness Objectives for Collaborative Filtering. 2017.

# Difficulties

Multiple comparisons - we're looking at a lot of differences

Causality

Interaction with other effects, like popularity bias

Getting data, and issues such as gender binarization

# **Potential mitigations**

- Prioritize challenges affecting underserved groups
  - May improve service for everyone!
- Build specialized services to meet users' needs
- Infer user type / need class
  - Ok for some (e.g. kids)
  - Problematic for others

### But first, **study the problem**!

Different classes of users or needs have different ethical concerns

# What does this mean?

Not all users experience the system in the same way

- Measure! Measure! Measure!
- How does what you see align with business or social goals?

Different concerns bring contradictory pictures

- Correcting for popularity bias  $\Rightarrow$  changed demographic picture
- Which is 'right'? Need more research!

Delivering: open area of research

# questions?

# **Provider Fairness**





Kay, Matuszek, Munson, Unequal Representation and Gender Stereotypes in Image Search Results for Occupations, 2015

# What happens to authors?





Hurdles by Ragnar Singsaas, used under CC-BY-SA 2.0. https://flic.kr/p/5jgjJP



# Provider fairness

- unfair representation of providers in neutral queries/contexts
- sources
  - **provider composition**: biases in representation of providers
  - user behavior: biases in user feedback can affect learned targets
  - **system design**: biases in what data are filtered in/out



Figure 4: Proportion of agentic images conveying power (difference from respective "person" baseline).

Otterbacher, Bates, Clough. Competent Men and Warm Women: Gender Stereotypes and Backlash in Image Search Results. 2017

| scenario                | queries         | document  | relevance     | producers         |
|-------------------------|-----------------|-----------|---------------|-------------------|
| news                    | keyword         | article   | topical       | authors           |
| academic                | keyword         | article   | topical       | authors           |
| citation recommendation | draft           | article   | topical       | authors           |
| medical academic        | keyword         | article   | topical       | research subjects |
| book search             | keyword         | book      | topical       | authors           |
| book recommendation     | keyword         | book      | topical       | authors           |
| employment              | job description | candidate | skill         | candidates        |
| community QA            | question        | answer    | topical       | answerers         |
| music recommendation    | keysong         | track     | entertainment | musicians         |
| movie recommendation    | keyfilm         | movie     | entertainment | directors         |

# Calibration

Results are fair if they achieve fair representation.

- Results are evenly balanced?
- Results reflect population?
- Results reflect user historical data?

# **Book Gender - Ratings**

#### Book Gender



M Ekstrand, M Tian, M Kazi, H Mehrpouyan, D Kluver. Exploring author gender in book rating and recommendation. 2018

# **Book Gender - Recommendations**



# **Book Gender - Propagation**



# **Modeling User Calibration**



# Fairness for Probabilistic Models

# Results are fair if,

$$P(R|d) = P(R|\tilde{d})$$

 ${ ilde d}$  document d without sensitive attributes

Achieving this:

- Regularization term penalizing non-independence
- Extend recommendation model to incorporate sensitive attribute

$$\ell_{\frac{1}{2}}$$
-fairness =  $\left(\sum_{a \in \mathcal{A}} \sqrt{P(a|\pi_{\leq k})}\right)^2$ 

#### $\pi_{\leq k}$ top k elements in $\pi$

#### A fair ranking has good representation for different groups a.

Mehrotra, McInerney, Bouchard, Lalmas, Diaz, Towards a Fair Marketplace, 2018.

# Population-Sensitive Ranking Fairness

Is it fair?

Next metrics: a ranking is **fair** if its **composition** reflects the **population** 

Population 35% female => rankings 35% female

What is population? How do you count proportion in rankings?

# Rank-based fairness measures

### Assume a binary protected attribute:

Population: full ranking turned into a set

$$\operatorname{rND}(\pi) = rac{1}{\mathcal{Z}} \sum_{i=1}^{|\mathcal{D}|} \delta_i \left| P(a|\pi_{\leq i}) - P(a|\mathcal{D}) \right|$$

Counting: average composition of ranking prefixes

$$\mathrm{rKL}(\pi) = \frac{1}{\mathcal{Z}} \sum_{i=1}^{|\mathcal{D}|} \delta_i D_{\mathrm{KL}}(P(A|\pi_{\leq i})||P(A|\mathcal{D})) \quad \delta_i = \frac{1}{\log_2 i}$$

If whole list is 50% women, first 10 should be 50% women

$$\operatorname{rRD}(\pi) = \frac{1}{\mathcal{Z}} \sum_{i=1}^{|\mathcal{D}|} \delta_i \left| \frac{P(a|\pi_{\leq i})}{P(\overline{a}|\pi_{\leq i})} - \frac{P(a|\mathcal{D})}{P(\overline{a}|\mathcal{D})} \right|$$

# **Rank-Aware Calibration**

Population: generalized population estimator

Counting: probability of picking a group member going down the list, discounted

fairness<sub>$$\lambda$$</sub> =  $\phi\left(\sum_{i=1}^{|\mathcal{D}|} \delta_i^{\lambda} P(A|\pi_i), P(A|\mathcal{D})\right)$ 

 $\delta_i^{\lambda}$  parameterized rank discount

P Sapiezynski, W Zeng, R Robertson, A Mislove, C Wilson. Quantifying the Impact of User Attention on Fair Group Representation in Ranked Lists. 2019.

# **Pairwise Fairness**

$$P(d \succ d' | f^*(d) > f^*(d'), A_d = a) = P(d \succ d' | f^*(d) > f^*(d'), A_d = \overline{a})$$
 pairwise fairness

$$P(d \succ d'|f^*(d) > f^*(d'), A_d = A_{d'} = a) = P(d \succ d'|f^*(d) > f^*(d'), A_d = A_{d'} = \overline{a})$$
 intra-group pairwise fairness

 $P(d \succ d'|f^*(d) > f^*(d'), A_d = a, A_{d'} = \overline{a}) = P(d \succ d'|f^*(d) > f^*(d'), A_d = \overline{a}, A_{d'} = a) \quad \text{inter-group pairwise}$ fairness

# A ranking is fair if probability of correct ranking (relevant over irrelevant) is independent of protected class.

Beutel, Chen, Doshi, Qian, Wei, Wu, Heldt, Zhao, Hong, Chi, Goodrow. Fairness in Recommendation Ranking through Pairwise Comparisons. 2019.



$$\mathcal{A}_i = \sum_{q \in \mathcal{Q}} a_i^q$$

accumulated **attention** for user iover a sequence of queries Q

$$\mathcal{R}_i = \sum_{q \in \mathcal{Q}} r_i^q$$
 .

accumulated **relevance** for user iover a sequence of queries Q



# Relationship to Diversity in Information Retrieval

- diversity in information retrieval
  - topic composed of multiple subtopics
  - document can be composed of zero or more subtopics
  - measures promote exposure of many subtopics early in ranking
- fairness in information access
  - producer population composed of multiple intersecting attributes
  - document (usually) associated with one producer
  - measures promote exposure of many intersecting subgroups early in ranking

# **Combining Fairness with Effectiveness**

• fairness metrics do not include effectiveness information.

• fairness and effectiveness trade off.



Mehrotra, McInerney, Bouchard, Lalmas, Diaz, Towards a Fair Marketplace, 2018.

# Linear Interpolation

$$\mu^*(\pi) = \beta \mu_{\rm rel}(\pi) - (1 - \beta) \mu_{\rm fairness}(\pi)$$

Mehrotra, McInerney, Bouchard, Lalmas, Diaz, Towards a Fair Marketplace, 2018.

# Fairness Maximal Marginal Relevance (FMMR)

 ${\mathcal A}$  set of protected attribute values

 $\phi_a(d, d')$  similarity between two documents based on protected attribute value a of providers of d and d'

Karako, Manggala. Using Image Fairness Representations in Diversity-Based Re-ranking for Recommendations. 2018.

# Fairness Maximal Marginal Relevance (FMMR)

$$\pi_{k} = \operatorname{argmax}_{d \in \mathcal{D} - \pi_{< k}} \lambda f(d) - (1 - \lambda) \max_{d' \in \pi_{< k}} \sum_{a \in \mathcal{A}} \phi_{a}(d, d')$$
1. Star Wars
2. Frozen
3. Iron Man
4. Star Wars IV?
Avengers?
La La Land?

ranking function f

#### Direct application of diversity concepts!

1

# **Challenges in Fair Ranking**

- Joint optimization of consumer and producer
- Non-uniform consumer tolerance to diversity
- Optimization with competing or adversarial services

# questions?

# Feedback Loops

# Runaway Feedback Loops

Feedback loops amplify small differences

Be careful with:

- Relevance feedback
- Collaborative filtering inputs
- Learning from click data

If D1 is a little more relevant than D2, should it receive a lot more exposure?

What if D2 is by an underrepresented author?

Ensign, Friedler, Neville, Scheidegger, Venkatasubramanian. Runaway Feedback Loops in Predictive Policing. 2018.

# **Iterative Prediction and Fairness**

- recommendation systems, especially those based on ML, increase the consistency in recommendations across different users.
- how does this consistency between users change over multiple iterations compared with prediction error?



Chaney, Stewart, Engelhardt. How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility. 2018.

# **Iterative Prediction and Fairness**



Figure 3: Change in Jaccard index of user behavior relative to ideal behavior; users paired by cosine similarity of  $\theta$ . On the left, mild homogenization of behavior occurs soon after a single training, but then diminishes. On the right, recommendation systems that include repeated training homogenize user behavior more than is needed for ideal utility.

Chaney, Stewart, Engelhardt. How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility. 2018.

# **Iterative Prediction and Fairness**

- does consistency uniformly impact all items in the corpus?
- Gini coefficient: measures inequity of exposure.
- some algorithms increase user-user consistency relative to optimal and increase inequity relative to optimal.



# **Iterative Prediction and User Churn**

- When the protected group labels are latent, we cannot monitor fairness.
- Even initially-fair models can converge to unfair models.
- How bad is the situation if we assume that under-performance leads to user churn?



*Figure 1.* An example online classification problem which begins fair, but becomes unfair over time.
#### **Iterative Prediction and User Churn**



ERM: Expected Risk Minimization (standard learning approach) DRO: Distributionally Robust Optimization AAE: African American English (under-represented group) SAE: Standard American English (over-represented group)

Hashimoto, Srivastava, Namkoong, Liang, Fairness Without Demographics in Repeated Loss Minimization. 2018.

#### Challenges in Feedback Loops

- Temporal reasoning/delayed reward
- Modeling and understanding the consumers/world
- Two-sided feedback loops
- Feedback loop dependence on number of substitutable services

### Pragmatics: Data for Studying Fairness

#### The Problem

We want to study distribution of opportunity, quality, etc. by sensitive attribute

We have lots of data sets... most of which don't have sensitive attributes

For *much* more, see *Limits of Social Data* tutorial and paper below.

• http://www.aolteanu.com/SocialDataLimitsTutorial/

A Olteanu, C Castillo, F Diaz, E Kıcıman. Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries. 2019

#### Consumer fairness data

RecSys rating data with user demographics:

- MovieLens (100K and 1M)
- Last.FM collected by Celma

Infer other fairness-relevant characteristics, e.g.:

- Position in taste space
- Account age / activity level

Probably don't try to infer demographics (gender, race)

#### Producer fairness data

Easier, because producers tend to be more public than consumers

#### Example Pipeline



#### Producer fairness data

Easier, because producers tend to be more public than consumers

Pitfalls:

- Imprecise data linking
- Problematic operationalizations (e.g. VIAF enforcing binary gender)

Sources:

- Books: Library of Congress
- Scholars: mine open corpus data (for some characteristics)

Be careful distributing

#### More Challenges

- Public data is hard to find
  - How was it defined + assembled?
- Inference is deeply problematic
  - Reinforces stereotypes
  - Inaccurate in biased ways
  - Program for Cooperative Cataloging specifically prohibits assuming gender from pictures or names
- Reasonably accurate data may not be distributable
  - Making target lists easy to find increase risk
  - Propagates errors on an individual level

A Olteanu, C Castillo, F Diaz, E Kıcıman. Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries. 2019 Report of the PCC Ad Hoc Task Group on Gender in Name Authority Records. 2016

A L Hoffmann. Data Violence and How Bad Engineering Choices Can Damage Society. 2018

# questions?





- **Data collection**: training data often biased and causes downstream fairness issues.
- **Blind spots**: sensitive group definition poorly-understood/absent
- Audit protocol: current approaches *reactive* to user complaints
- Audit scale: current approaches atomistic, ignoring system-level fairness
- **Remedies**: current treatments incompatible with production realities
- Human bias: values embedded throughout the design process

Organization-wide shared framework and priorities

Expectations: checklist

Product-area specific methods

Product *x* Product *y* Product *z* 

Cramer, Garcia-Garthright, Springer, Reddy. Assessing and Addressing Algorithmic Bias in Practice, 2018.



#### Tutorial: Challenges of incorporating algorithmic fairness into industry practice

H. Cramer, K. Holstein, J. Wortman Vaughan, H. Daumé III, M. Dudík, H. Wallach, S. Reddy, J. Garcia-Gathright

https://www.youtube.com/watch?v=UicKZv93SOY

# **Open Problems**

#### **Reference Points for Fairness**

What *should* result lists look like?

- What accurately represents the world?
- What accurately represents the world as it could or should be?

#### Fairness in UX

How do interface & interaction affect fairness outcomes?

- Result presentation
- Feedback / preference elicitation

Most FAT\* interface work focused on transparency / explainability

#### **Operationalizing Justice**

How do we translate socially-relevant goals into measurable (and optimizable?) properties of information access systems?

- What are the relevant concepts of justice, fairness?
- How do they manifest in information access?
- How do we measure them?

A lot focuses on what we *can* measure.

#### Accountability

"FAT\*" is Fairness, Accountability, and Transparency

What does accountability look like for information access?

- To whom do IA systems & their operators answer?
- Who decides relevant fairness constructs?
- What are mechanisms for seeking redress for violations?

#### **More Resources**

#### From us:

- Slides
- Bibliography

https://fair-ia.ekstrandom.net

Paper in progress

#### **Elsewhere:**

- FACTS-IR workshop Thursday
- FATREC workshop '17-'18
- Papers in FAT\*, RecSys, SIGIR
- TREC track!

# Questions?

https://fair-ia.ekstrandom.net

#### Thanks to:

- Amifa Raj & the People & Information Research Team
- NSF (based in part on work supported by IIS 17-51278)
- Himan Abdollahpouri & Nasim Sonboli & That Recommender Systems Lab